Development of an ultra-high capacity hydrocarbon fuel based micro thermoelectric power generator
B. Aravind,
Karan Hiranandani and
Sudarshan Kumar
Energy, 2020, vol. 206, issue C
Abstract:
The objective of the present study is to develop a fossil-fuel based alternative energy storage system for electrochemical batteries. A novel perforated-plate based microcombustor, used as a heat source for thermoelectric power generation, is developed in the present work. It has been shown to produce a high heat-flux with improved temperature uniformity. A superior thermal performance is achieved due to simultaneous flame-flame interaction and flame-impingement on the combustor walls. The performance of the microcombustor, in terms of heat-flux and surface temperature distribution, is compared with a theoretical model developed using the inverse heat conduction technique. A high heat-flux of 56 kW/m2 with a significantly lower coefficient of variance is achieved. The performance of the integrated system is experimentally investigated through detailed thermal and flame stability characteristics. An electric power output of 21.2, 22.4 and 23.5 W, with an overall conversion efficiency of 3.01, 2.82 and 2.68 %, is achieved for mixtures with equivalence ratios of 0.8, 0.9 and 1.0 respectively at a mixture velocity of 1.0 m/s. The novelty of the present study lies in the development of a high power system and its performance characterisation at various operation conditions, making it a suitable alternative for various standalone, rural, and portable applications.
Keywords: Microcombustor; Perforated plate combustor; Thermoelectric power system; Flame stability; Conversion efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312068
DOI: 10.1016/j.energy.2020.118099
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().