EconPapers    
Economics at your fingertips  
 

Multi-objective optimization of a solar hybrid CCHP system based on different operation modes

Zhihui Song, Tao Liu and Qizhao Lin

Energy, 2020, vol. 206, issue C

Abstract: This paper carries out a multi-objective optimization of a solar hybrid combined cooling, heating and power (CCHP) system, based on the objective functions of annual cost saving ratio (CSR) and primary energy saving ratio (PESR). The system is modeled in three modes: 1) following electrical load (FEL); 2) following thermal load (FTL) and 3) following thermal load and selling power to grid (FTL-S). Non-dominated Sort Genetic Algorithm- II (NSGA-II) is adopted to find the Pareto front solutions of the potentially optimal configuration and corresponding criteria. The results show a conflict between cost saving and fuel saving. By selecting the compromised optimal point, the CSR increases to 25.04% and the PESR increases to 37.86% on average. The system in FEL mode performs best in energy saving and the system in FTL-S mode performs best in economy. The solar hybrid CCHP system is also compared with other three systems: 1) conventional CCHP system; 2) CCHP system with photovoltaic assisted only and 3) CCHP system with solar collector assisted only. In the end, the sensitivity analysis is implemented and the results present that energy prices and the efficiency of major equipment have varying degrees of impact on system performance.

Keywords: CCHP system; Solar energy; Multi-objective optimization; Sensitivity analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312329
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312329

DOI: 10.1016/j.energy.2020.118125

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312329