EconPapers    
Economics at your fingertips  
 

Thermodynamic and economic performance of oxy-combustion power plants integrating chemical looping air separation

Menglei Qing, Bo Jin, Jinchen Ma, Xixian Zou, Xiaoyu Wang, Chuguang Zheng and Haibo Zhao

Energy, 2020, vol. 206, issue C

Abstract: Oxygen supply from cryogenic air separation unit (ASU) causes high economic cost and energy penalty, which hinders the practicability of oxy-combustion technology. Chemical looping air separation (CLAS) as a thermodynamic-efficient and cost-effective approach can satisfy the oxygen demands for oxy-combustion power plants. To optimize process configuration and identify the effect of recycling position for oxy-combustion power plants integrating CLAS (i.e. OXY-CLAS), the paper focuses on process simulation, thermodynamic analysis and techno-economic evaluation of two typical OXY-CLAS systems. For sastifying the oxygen concentration demand in oxy-combustion, the mixture of recycled flue gas and steam is adopted as the reduction medium in CLAS. For OXY-CCLAS (using cold recycled flue gas as oxygen releasing medium in CLAS), its net efficiency and exergy efficiency are 4.80 and 4.54% points higher than those of oxy-combustion coupled with cryogenic ASU, respectively. Meanwhile, its cost of electricity is reduced about 12.18% whilst its CO2 avoidance cost and CO2 capture cost decrease about 48.14% and 39.34%, respectively. When compared between two OXY-CLAS systems, OXY-WCLAS (utilizing warm recycled flue gas in CLAS) exhibits better performance both on thermodynamic and economic aspects. The exergy efficiency of WCLAS system is 1.29% points higher than that of CCLAS system.

Keywords: Oxy-combustion; Chemical looping air separation; Process simulation; Exergy analysis; Techno-economic evaluation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312433
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312433

DOI: 10.1016/j.energy.2020.118136

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312433