EconPapers    
Economics at your fingertips  
 

How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry

Boqiang Lin () and Xing Chen

Energy, 2020, vol. 206, issue C

Abstract: Technological progress leads to factor shares change by changing the marginal productivity of factors or the substitution elasticity between factors. This is a key energy issue affecting total factor energy performance. The study used data from 1980 to 2016 of China’s non-ferrous metals industry (CNMI). In the first part, the paper employs ridge regression to study the substitution effect and technological progress difference among factor inputs. Second, the paper analyzed the impact of technical indexes on energy performance by using the Data Envelopment Approach (DEA)-Malmquist framework. The results show a higher output elasticity of labor (0.300–0.451) than that of energy (0.289–0.403) and capital (0.230–0.346). China’s non-ferrous metals industry shows labor-biased technological progress. The results indicate the existence of mutual substitution relations among the three factors. The substitution elasticity among input factors shows a convergence trend. The substitution elasticity between labor and energy (1.062–1.199) emerge as the highest. This is followed by the substitution elasticity of energy for capital. In addition, the technological progress difference between the three inputs become smaller gradually. Whether from the national average or regions, energy performance has improved significantly, which benefits from the impact of technological progress and changes technical efficiency.

Keywords: Technological progress; Substitution elasticity; Ridge regression; DEA; Total-factors energy efficiency; Non-ferrous metals industry (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312597
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312597

DOI: 10.1016/j.energy.2020.118152

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-06
Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312597