EconPapers    
Economics at your fingertips  
 

Capacity fade characteristics of lithium iron phosphate cell during dynamic cycle

Yue Yang, Lei Chen, Lijun Yang, Xiaoze Du and Yongping Yang

Energy, 2020, vol. 206, issue C

Abstract: As a key issue of electric vehicles, the capacity fade of lithium iron phosphate battery is closely related to solid electrolyte interphase growth and maximum temperature. In this study, a numerical method combining the electrochemical, capacity fading and heat transfer models is developed. The electrolyte interphase film growth, relative capacity and temperature change of lithium iron phosphate battery are obtained under various operating conditions during the charge-discharge cycles. The results show that the electrolyte interphase film thickness increases as the C rate rises and relative capacity decreases. The capacity loss is almost 19.7% when the C-rate rises from 0.5C to 2C after 2000 cycles. The thickness of electrolyte interphase film increases and relative capacity decreases when the ambient temperature goes up. A thicker negative electrode is adverse to the electrolyte interphase film growth, and leads to the increased relative capacity, while the influence of separator thickness can be negligible. The battery maximum temperature rises with increasing the C rate and initial temperature, which exceeds the safe upper limit when the ambient temperature increases to 318.15 K at 3C. By increasing the convective heat transfer coefficient, the maximum temperature can be reduced to the security value.

Keywords: Lithium iron phosphate battery; Capacity fade; Heat transfer; Solid electrolyte interphase; Relative capacity; Maximum temperature (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312627
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312627

DOI: 10.1016/j.energy.2020.118155

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312627