Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study
Junnian Wu and
Na Wang
Energy, 2020, vol. 206, issue C
Abstract:
The energy efficiency improvement and practicable carbon emission reduction of coal chemical industry as well as other industrial systems are major concerns associated with designing feasible carbon emission reduction scheme. Based on advanced exergy analysis, this study establishes quantitative analysis between exergy destruction and direct carbon emission by three different methods to explore avoidable exergy destruction and subsequent avoidable carbon emissions in coal to synthetic natural gas (coal-to-SNG) industry. The research shows avoidable exergy destruction accounts for 57.99% of total exergy destruction and 86.07% of total exergy destruction is endogenous, so the main causes of irreversibility of units come from units’ internal operations and this coal-to-SNG system has considerable improvement potential. The avoidable carbon emissions range from 52.50 t/h (0.16kgC/Nm3SNG) to 165.32 t/h (0.52kgC/Nm3SNG) according to different assumptions. In light of the scenarios of exergy destruction reduction and available research results, the real avoidable carbon emissions may be closer to 115.95 t/h, correspondingly the carbon emission reduction potential may be 44.06%. Therefore, reducing exergy destruction by one percentage point may bring about 0.76% carbon emission reduction. This idea identifying avoidable carbon emission by avoidable exergy destruction reduction may be spread to coal chemical processes and other industrial systems.
Keywords: Coal-to-SNG; Advanced exergy analysis; Avoidable exergy destruction; Avoidable carbon emission (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220313530
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:206:y:2020:i:c:s0360544220313530
DOI: 10.1016/j.energy.2020.118246
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().