EconPapers    
Economics at your fingertips  
 

Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins

Çağatay Yıldız, Müslüm Arıcı, Sandro Nižetić and Amin Shahsavar

Energy, 2020, vol. 207, issue C

Abstract: In phase-change applications, once the melting process is completed, the natural convective heat transfer of liquid material may be promoted or degraded by the fins, which is the main motivation of this research. For this reason, the natural convection heat transfer inside a PCM container that can be a representative model for PV/PCM systems is numerically investigated in this study by considering three aspect ratios (AR = 1, 2 and 4), three Rayleigh numbers (Ra = 104, 105 and 106), two types of fins as rectangular and tree-like branching fin, and three different length-to-height ratio of rectangular fin (w/H = 0.3, 0.4 and 0.5). The rates of increment and decrement are presented taking the finless enclosure as the reference case. The computed results revealed that the natural convection is promoted up to 20%, depending on Ra and fin length by the inclusion of fins when the AR = 1, while it is degraded down by 5.5% for AR = 4. Interestingly, at AR = 2, the percentage increase and decrease of mean Nu numbers are slighter compared to other aspect ratios. Besides, it is also noticed in this study that utilizing a tree-like branching fin is not as effective as a rectangular fin with the same mass.

Keywords: Fin; Molten PCM; Natural convection; PV/PCM system; Tree-like branching fin; Heat transfer degradation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422031330X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s036054422031330x

DOI: 10.1016/j.energy.2020.118223

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:207:y:2020:i:c:s036054422031330x