EconPapers    
Economics at your fingertips  
 

On the equivalent effect of initial temperature and pressure coupling on the flame speed of methane premixed combustion under dilution

Zhiqiang Han, Zhennan Zhu, Wenbin Yu, Kun Liang, Zinong Zuo, Qi Xia and Dongjian Zeng

Energy, 2020, vol. 207, issue C

Abstract: This study was conducted with methane as fuel and CO2 as diluent gas. The equivalent effect of initial temperatures (323–423 K) and pressures (0.1–0.3 MPa) coupling on methane-air premixed combustion flame propagation speed (i.e. increasing or decreasing initial temperature and pressure simultaneously to have same flame propagation speeds when equivalence ratio and fraction of CO2 are unchanged) was investigated under a series of fractions of CO2 (0%–16%) and equivalence ratios (0.9, 1.0, and 1.1). Laminar burning velocities of different test conditions with similar flame propagation speeds were investigated and flame instability was also analyzed. The results show that similar flame speeds can be obtained when elevating initial temperature and pressure synchronously under constant equivalence ratio and the fraction of CO2. Similar flame propagation speeds can lead to close laminar burning velocities and similar flame structures. Flame speed under higher initial temperature and pressure is more sensitive to temperature and pressure, but dilution can suppress this sensitivity. Flame instability is stronger under higher initial temperature and pressure. Hydrodynamic instability dominates and it is mainly influenced by flame thickness. Differences are also shown in pressure and temperature during non-laminar stage. Dilution can enhance the difference in combustion duration.

Keywords: Methane; Laminar burning velocity; Initial temperature and pressure coupling; Equivalent effect (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220313761
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313761

DOI: 10.1016/j.energy.2020.118269

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313761