EconPapers    
Economics at your fingertips  
 

Post-combustion CO2 capture process in a circulated fluidized bed reactor using 200 kg potassium-based sorbent: The optimization of regeneration condition

Yooseob Won, Jae-Young Kim, Young Cheol Park, Chang-Keun Yi, Hyungseok Nam, Je-Min Woo, Gyoung-Tae Jin, Jaehyeon Park, Seung-Yong Lee and Sung-Ho Jo

Energy, 2020, vol. 208, issue C

Abstract: The Potassium-based dry sorbent CO2 capture process can selectively capture CO2 from flue gas without toxicity. In this study, the optimization of regeneration condition was investigated to pursue economical CO2 capture process in a circulated fluidized bed reactor as most energy for CO2 capture is consumed in the sorbent regeneration. One important part for CO2 capture process is to produce highly concentrated CO2 during the sorbent regeneration in the conditions of CO2 rich with a presence of H2O, which thermodynamically reduces the sorbent regeneration efficiency at low temperature. This could be overcome by increasing the regeneration temperature although the sorbent regeneration energy increases. The dry sorbent performance in the carbonator was evaluated by changing the temperature, CO2 and H2O concentration in the regenerator, which showed about 88% CO2 removal efficiency and 5.6 wt% dynamic sorption capacity. The dry sorbent was sampled at each operating condition to confirm the dry sorbent performance, evaluated over CO2 concentration. The optimal regeneration condition was obtained by considering CO2 removal efficiency, dynamic sorption capacity and regeneration energy. Finally, the optimal regenerator temperature was determined to be approximately 468 K where the CO2 capture process in the circulated fluidized bed reactor showed 95% for CO2 purity.

Keywords: CO2 capture; Potassium-based dry sorbent; Circulated fluidized bed; High-concentration CO2; Optimization of regeneration condition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220312950
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:208:y:2020:i:c:s0360544220312950

DOI: 10.1016/j.energy.2020.118188

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220312950