Economics at your fingertips  

Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach

Hêriş Golpîra

Energy, 2020, vol. 209, issue C

Abstract: Considering economic and environmental concerns as well as thermal and visual comfort requirements, this paper introduces the idea of Smart Energy-Aware Manufacturing Plant Scheduling for general manufacturing processes, especially high-value-added ones. The integrated system benefits from the use of a grid-connected Microgrid, a combined cooling, heat, and power system, and renewable power. Employing the Conditional Value-at-Risk and guaranteeing both solution and model robustness through an original multi-objective risk-based robust mixed-integer linear programming to optimally support the system make the contribution of the paper novel and unique. The main objective is to schedule manufacturing (non-shiftable) and non-manufacturing (shiftable and interruptible) loads, and distributed energy resources based on the real-time-pricing policy in an interactive decentralized operation of a capacitated multi-carrier energy production-consumption system. Compared to the conventional system, the results outline 64.63%, 1.62%, 100%, and 65.23% less Carbon dioxide emissions, net production, power exchange, and total costs, on average. The proposed framework is preferable to the framework that is based on the use of combined heat and power systems, at least in terms of a reduction in production costs. Considering both the supply- and demand-side uncertainties, the framework performs good trade-offs between solution robustness and model robustness, and environmental and economic concerns.

Keywords: Energy efficiency; Combined cooling, Heat and power (CCHP) system; Robust optimization; Conditional Value-at-Risk (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2021-06-30
Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220314924