EconPapers    
Economics at your fingertips  
 

High thermoelectric performance of two-dimensional α-GeTe bilayer

Brahim Marfoua, Young Soo Lim and Jisang Hong

Energy, 2020, vol. 211, issue C

Abstract: Study on two-dimensional (2D) materials attracts extensive research interests due to its peculiar physical properties. We calculated the temperature dependence of the thermoelectric property of the 2D α-GeTe layer by applying the Boltzmann transport theory and also used the semi-empirical Wiedemann–Franz law method. We found that the electronic thermal conductivity from the Wiedemann–Franz law was substantially smaller than that found from the Boltzmann transport theory. Thus, from the Boltzmann transport theory, we obtained a maximum ZT of 0.95 in the bilayer structure. We also found that the 2D α-GeTe bilayer system exhibits an anomalous temperature and carrier type dependencies. For instance, both n- and p-type systems displayed high ZT of 0.8–0.95 and this value was unchanged in a wide range of temperatures 100–600 K. Overall, the TE efficiency of the bilayer system was insensitive to the wide range of temperature and carrier concentration and also carrier type. Thus, the 2D bilayer α- GeTe may show superior TE property, not found in any other 2D materials.

Keywords: Bilayer α-GeTe; Boltzmann approach; Thermoelectric property; Temperature dependency; Carrier type dependency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220318016
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318016

DOI: 10.1016/j.energy.2020.118693

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318016