Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method
Ruoli Tang,
Qing An,
Fan Xu,
Xiaodi Zhang,
Xin Li,
Jingang Lai and
Zhengcheng Dong
Energy, 2020, vol. 211, issue C
Abstract:
Due to the upcoming regulations for decreasing emissions from shipping, the hybrid energy system is becoming a more popular and feasible option for large ships. This work focuses on the cooperation and optimal operation of onboard hybrid energy system and on-land shore power, in order to obtain cost savings from the perspective of shipping company. Firstly, this work proposes a novel concept, namely “data acquisition and sharing mechanism at shipping company level”, then the corresponding operation model and control methodology are developed. To be specific, the ship’s energy-management is modelled as an ultrahigh-dimensional optimization problem, in which the binary/continuous hybrid encoding scheme is developed, and a high time-resolution (15 min per point) is achieved. Then, by analysing the variable-coupling characteristic, the proposed model is proved to be non-separable in the early evolution stage, and nearly separable in the later stage. Finally, the novel “power/time/random” variable-grouping and “guided mutation of context-vector” mechanisms are proposed for enhancing the co-evolutionary algorithm to optimize the model. Experimental results show that even when the model dimensionality increases to more than 3000, the evaluated system can strictly satisfy the regulations and constraints from both the port and ship, and also obtain great cost savings.
Keywords: Intelligent ship; Green port; Hybrid energy system; Energy management; Optimal scheduling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220321848
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321848
DOI: 10.1016/j.energy.2020.119077
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().