Improving energy efficiency for a low-temperature CO2 separation process in natural gas processing
Jongseong Park,
Sekwang Yoon,
Se-Young Oh,
Yoori Kim and
Jin-Kuk Kim
Energy, 2021, vol. 214, issue C
Abstract:
Conventional amine sweetening process is limited to treating gas with high content of CO2, due to significant energy demand for the regeneration of solvent and the compression of CO2 product for Enhanced Oil Recovery (EOR) or sequestration. Although distillation processes operating at sub-ambient conditions have been regarded as an economic and energy-efficient alternative to amine sweetening process, it is not straightforward to materialize the full benefits of the low temperature distillation process in practice because of complex design interactions existed. The distillation process for carbon dioxide separation operated at sub-ambient conditions are modeled with commercial simulator Aspen HYSYS®. A range of thermodynamic packages are screened for the selection of the most appropriate one to be used, while the validation of the process modeling is made with reference data. Understanding on the dependence of energy cost on the key design and operating variables is obtained with sensitivity studies, with which energy-efficient selection of column configurations and operating conditions throughout the process is made. Suggestion is also made for improving energy efficiency for the process without compromising separation process, by setting different operating pressure and introducing new configuration involving stream splitting and merging.
Keywords: Energy efficiency; CO2 separation; Process design; Process simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220319514
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319514
DOI: 10.1016/j.energy.2020.118844
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().