EconPapers    
Economics at your fingertips  
 

Impact of thermal masses on the peak load in district heating systems

Elisa Guelpa

Energy, 2021, vol. 214, issue C

Abstract: During district heating operations, part of the heat supplied to the network is used to increase the temperature of the various components (e.g. transport and distribution networks, heat exchangers installed in the substations, heating circuits and heating devices in buildings). The mass of these components acts as a thermal storage, storing heat when their temperature increases and releasing heat when they cool down. The impact may become significant, especially during shutdown or setback. In this paper, the components are analyzed in order to estimate the impact of their thermal capacity on the district heating demand. This provides a clear image of the additional supply used to heat the other thermal masses, that can be managed differently since partially independent from the indoor temperature. Results show that in the case study analyzed, i.e. large system mainly switched off during night, the heat absorbed by the thermal masses corresponds to the 4% of the heat supplied during the entire day and 70% of the heat provided during the peak. The various thermal masses affect the extra heat absorbed to a similar extent (except for radiators). Results provide a clue that proper management of thermal masses for energy saving might be considered.

Keywords: Thermal capacity; District heating network; Storage; Temperature variation; Thermal networks; Advanced operations (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220319563
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319563

DOI: 10.1016/j.energy.2020.118849

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220319563