EconPapers    
Economics at your fingertips  
 

A fluid dynamics perspective on the flow dependent performance of honey comb microbial fuel cells

Thangavel Sangeetha, I-Ting Li, Tzu-Hsuan Lan, Chin-Tsan Wang and Wei-Mon Yan

Energy, 2021, vol. 214, issue C

Abstract: Power crisis, global warming and various environmental issues have constantly emphasized researchers to discover sustainable and environmental-friendly alternative energy resources. Bio-electrochemical systems, significantly microbial fuel cells (MFCs) can harvest bioenergy from organic wastes and treat them simultaneously. Flow parameter investigation has been conducted in innovative flow straightener implemented honey comb MFCs (HCMFCs) in the current research study. The impacts of flow channel diameter on the performance of the HCMFCs operated in recirculation batch mode have been estimated in the current study. Three different diameters like 0.4 cm, 0.7 cm and 1 cm are used in three reactors as HCMFC1, HCMFC 2 and HCMFC 3 respectively along with a control reactor devoid of flow straighteners. Numerical simulation models are presented for reactor performance portrayal. The power performance is analyzed by Nyquist plots, polarization curves, power density curves and equivalent circuits. Result justification is accomplished by anode biofilm thickness analysis using scanning electron microscope. HCMFC 2 showcased the best performance by achieving a voltage generation of 0.55 V, current density of 5300 mA/m2, power density of 430 mW/m2, organic content removal of 97.6%, reduced internal resistance and with the thickest anode biofilm. These innovative reactors will effectively enhance research and provide great prospects for future applications.

Keywords: Honey comb microbial fuel cells; Flow straighteners; Channel diameters; Numerical simulation; Flow velocity; Anode biofilm thickness (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220320351
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320351

DOI: 10.1016/j.energy.2020.118928

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320351