Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction
Hongguang Guo,
Yujie Zhang,
Yiwen Zhang,
Xingfeng Li,
Zhigang Li,
Weiguo Liang,
Zaixing Huang,
Michael Urynowicz and
Muhammad Ishtiaq Ali
Energy, 2021, vol. 214, issue C
Abstract:
Super-critical CO2 enhanced coalbed methane (Sc-CO2-ECBM) and microbially enhanced coalbed methane (MECBM) are environment-friendly technologies that can improve CBM recovery and generation. In this study, a new approach of MECBM based on Sc-CO2 extraction is presented. The Sc-CO2 pretreatment experiments of anthracite and bituminous coal were conducted to produce biomethane. The extracted organics and the changes of coal structure caused by Sc-CO2 were also analyzed to discuss the mechanism of methane stimulation. The results indicated that methane yields have been greatly improved after Sc-CO2 extraction by 734.85% and 148.15% for anthracite and bituminous coal, respectively. The extractions observed by GC-MS analysis is also favored to generate methane by microorganisms. The little increment of methane production from coal treated by subcritical CO2 indicated that the special characteristics of Sc-CO2 were critical for the stimulation of methane production. More functional groups and even new functional groups were formed to increase coal bioavailability after Sc-CO2 extraction. The specific surface area and total pore volume of bituminous coal increase after Sc-CO2 extraction that could provide more action sites for microorganisms and enzymes. These results strongly proved the feasibility of enhancing CBM by microbial degradation based on Sc-CO2 extraction.
Keywords: Microbially enhanced coalbed methane; Super-critical CO2; Organics; Functional group; Nitrogen adsorption (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220320429
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320429
DOI: 10.1016/j.energy.2020.118935
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().