An innovative approach to enhance sustainability of a district cooling system by adjusting cold thermal storage and chiller operation
Austin Anderson,
Behnaz Rezaie and
Marc A. Rosen
Energy, 2021, vol. 214, issue C
Abstract:
Enhancing sustainability, performance, and saving costs, are important goals for the district heating and cooling industry. There are many options for the upgrading and alteration of the equipment which demand a large initial investment. Usually, the initial cost is a barrier to implementing the plan. In this study, sustainability, performance, and cost savings are improved without any equipment change. Exergy assessment along with TRNSYS modeling and simulation are the tools applied in this study. The focus is on the operation time of the equipment. By adjusting the operation time of the equipment with the highest exergy destruction, in the district cooling in the University of Idaho, Moscow campus in the United States of America (USA) all three goals without any equipment change has been achieved. The operation hours of cold thermal energy storage (TES), cooling towers, and chillers are altered by removing the low efficiency operation time. As results electricity consumption is reduced to 38%, which is beneficial in terms of sustainability, as it eliminates 428,800 kg CO2 emissions in electricity generation and provides an annual cost saving of $140,000. Ultimately, modification of the equipment operation in district cooling is a key to improvement of sustainability and cost saving.
Keywords: Exergy; Exergy destruction; District cooling; Sustainability; Cold thermal energy storage; TES Operation; Electrical chiller operation; District energy; Cost saving (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220320569
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320569
DOI: 10.1016/j.energy.2020.118949
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().