Development of physical-chemical surrogate models and skeletal mechanism for the spray and combustion simulation of RP-3 kerosene fuels
Yuanqi Bai,
Ying Wang,
Xiaochen Wang,
Qiongyang Zhou and
Qimeng Duan
Energy, 2021, vol. 215, issue PB
Abstract:
RP-3 kerosene is a widely used fuel for civil and military transportation in China. Two RP-3 kerosene surrogates (UM1 and UM2) were proposed by genetic algorithm optimization methodology, aiming to simulate viscosity, density, surface tension, cetane number, lower heating value, H/C ratio and molecular weight along with sooting tendency under spray and engine relevant conditions. The RP-3 kerosene surrogates were composed of four components including n-dodecane, 2,2,4,6,6-pentamethylheptane, decalin and n-propylbenzene (UM1, 0.3374/0.3042/0.1954/0.163. UM2, 0.1449/0.3706/0.2059/0.0195/0.2591 by mole fraction). The carbon number of n-dodecane and 2,2,4,6,6-pentamethylheptane was both much closer to that of the real RP-3. Based on the proposed surrogates, a skeletal RP-3 surrogate chemical reaction mechanism was developed by decoupling methodology. The skeletal RP-3 surrogate mechanism was reduced only including 89 species and 225 reactions, which was efficient and reliable in CFD simulation. The surrogate models were validated during spray process under vapor and nonevaporating environment. The skeletal mechanism was verified against the foundational experiments such as ignition delay times, species concentrations and laminar flame speed under wide conditions. The applicability of skeletal mechanism was also well verified with our test data from a real compression-ignition engine.
Keywords: RP-3 kerosene; Surrogate; Skeletal mechanism; Spray; Engine (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220321976
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220321976
DOI: 10.1016/j.energy.2020.119090
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().