Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results
L.M.C. Gato,
A.R. Maduro,
A.A.D. Carrelhas,
J.C.C. Henriques and
D.N. Ferreira
Energy, 2021, vol. 216, issue C
Abstract:
Self-rectifying impulse turbines are a popular alternative to the Wells turbine for oscillating-water-column wave energy converters. Self-rectifying impulse turbines have two sets of guide-vanes, one set placed symmetrically on each side of the rotor, instead of a single set as in unidirectional turbines. The efficiency of self-rectifying turbines with fixed guide-vanes is known to be severely affected by the large aerodynamic losses due to the inherent misalignment between the outflow from the rotor and the downstream guide-vanes. The biradial turbine is an advanced, more efficient, version of the impulse self-rectifying turbine, as compared with the conventional axial-flow type. The paper presents a new topology for the radially-set guide-vane system arranged into multiple, rather than simple, rows, aiming to increase the turbine efficiency by reducing the losses by aerodynamic outflow stalling at the exit guide-vane system while ensuring the required inflow deflection by the inlet guide vanes. The design method combines an evolutionary optimisation algorithm with cascade-flow CFD RANS calculations. Experimental results are presented to validate the design method and to assess the performance and flow-losses of the single and double-row guide-vane system configurations.
Keywords: Wave energy; Air turbine; Impulse turbine; Biradial turbine; Guide-vane design (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220322179
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:216:y:2021:i:c:s0360544220322179
DOI: 10.1016/j.energy.2020.119110
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().