EconPapers    
Economics at your fingertips  
 

Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage

Dimberu G. Atinafu, Seunghwan Wi, Beom Yeol Yun and Sumin Kim

Energy, 2021, vol. 216, issue C

Abstract: Currently, numerous efforts are being made to develop shape-stabilized composite phase change materials (PCMs) to respond to unbalanced renewable energy storage systems. In this study, we engineered hybrid materials based on commercially available and environmentally friendly biochar derived from bamboo and multiwalled carbon nanotubes (CNTs) via a one-step hydrothermal method. The organic liquid n-dodecane was used as the energy storage material. The hybrid material provides favorable morphological and interconnected framework structures for PCM encapsulation and energy storage capacity in the composite PCMs. The PCM loading capacity of biochar, biochar-CNT, and CNTs reached 51.3%, 70.6%, and 83.2% with latent heat of 93.4 ± 1.1, 127.3 ± 1.1, and 152.3 ± 1.3 J/g, respectively. The integration of CNTs with biochar positively affected the latent heat storage capacity of the composite PCMs compared with that of the composite PCMs without CNTs. The pristine biochar exhibited a low PCM loading ratio and latent heat compared with biochar-CNTs and CNTs, presumably due to the limited pore space and strong intermolecular interaction between the reactive functional groups and PCM. Meanwhile, the obtained composite PCMs exhibited outstanding shape and thermal stabilities and chemical compatibilities. This synthesis strategy is expected to create a platform for fabricating biochar-based multifunctional PCMs for desired applications.

Keywords: Biochar; Carbon nanotubes; Composite phase change materials; Latent heat storage (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220324014
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:216:y:2021:i:c:s0360544220324014

DOI: 10.1016/j.energy.2020.119294

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220324014