EconPapers    
Economics at your fingertips  
 

Exergy-based investigation of a coal-fired allam cycle

Jing Luo, Ogechi Emelogu, Tatiana Morosuk and George Tsatsaronis

Energy, 2021, vol. 218, issue C

Abstract: The Allam cycle is a novel cycle that capitalizes on the unique thermodynamic properties of supercritical CO2 and the advantages of oxy-fuel combustion for power generation and CO2 capture. This study aims to confirm the outstanding performance of a coal-fired Allam cycle and with the aid of an exergetic analysis to provide detailed important information on the real thermodynamic inefficiencies within the cycle. The results show that the overall exergetic efficiency is 40.6%, with near 100% carbon capture. The highest exergy destruction occurs within the gasifier, which contributes 29.1% to the overall exergy destruction, followed by the combustion chamber (17.4%), the air separation unit (7.4%) and the turbine (4.1%). In addition, the results obtained from the exergetic analysis in this study are compared to those of a gas-fired Allam cycle. The contribution of the exergy destruction of the combustor in the gas-fired Allam cycle is higher than the total share of the gasifier and the combustor of the coal-fired Allam cycle in the system exergy destruction. The sensitivity analysis shows that the specific power demand of the air separation unit, as well as the turbine inlet pressure, outlet pressure and isentropic efficiency have significant impacts on the overall exergetic efficiency.

Keywords: Coal-fired allam cycle; Supercritical carbon dioxide; Oxy-fuel combustion; Exergetic analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220325780
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325780

DOI: 10.1016/j.energy.2020.119471

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325780