EconPapers    
Economics at your fingertips  
 

A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter

Cong Jiang, Shunli Wang, Bin Wu, Carlos Fernandez, Xin Xiong and James Coffie-Ken

Energy, 2021, vol. 219, issue C

Abstract: The control strategy of electric vehicles mainly depends on the power battery state-of-charge estimation. One of the most important issues is the power lithium-ion battery state-of-charge (SOC) estimation. Compare with the extended Kalman filter algorithm, this paper proposed a novel adaptive square root extended Kalman filter together with the Thevenin equivalent circuit model which can solve the problem of filtering divergence caused by computer rounding errors. It uses Sage-Husa adaptive filter to update the noise variable, and performs square root decomposition on the covariance matrix to ensure its non-negative definiteness. Moreover, a multi-scale dual Kalman filter algorithm is used for joint estimation of SOC and capacity; the forgetting factor recursive least-square method is used for parameter identification. To verify the feasibility of the algorithm under complicated operating conditions, different types of dynamic working conditions are performed on the ternary lithium-ion battery. The proposed algorithm has robust and accurate SOC estimation results and can eliminate computer rounding errors to improve adaptability compared to the conventional extended Kalman filter algorithm.

Keywords: State-of-charge; Extended Kalman filter; Adaptive; Square root; Power lithium-ion battery (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220327109
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327109

DOI: 10.1016/j.energy.2020.119603

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327109