Energetic, economic, exergetic, and exergorisk (4E) analyses of a novel multi-generation energy system assisted with bagasse-biomass gasifier and multi-effect desalination unit
Usman Safder,
Hai-Tra Nguyen,
Pouya Ifaei and
ChangKyoo Yoo
Energy, 2021, vol. 219, issue C
Abstract:
This study presents a novel multi-generation system (MGS) assisted by sugarcane bagasse to produce power, freshwater, and cooling. The proposed integrated MGS consisted of a bagasse-biomass based gasifier-Brayton cycle, a Rankine cycle, a Kalina cycle, an ejector refrigeration cycle, and a multi-effect desalination unit. Comprehensive energy, economic, exergy, exergorisk (4E) analyses of the proposed system were performed. The effects of operating parameters on thermodynamic performance and economic feasibility were investigated. An optimal configuration of the proposed system was determined via weighted multi-objective optimization approach considering exergorisk, exergy, and economic analyses. The results showed that bagasse-biomass flowrate was the dominant factor affecting variation in energy and exergy efficiencies, and total cost rate. An increase in bagasse-biomass flowrate from 1.5 kg/s to 10 kg/s led to decreases of 34.42% and 50.75% in overall energy and exergy efficiencies. The most substantial increase (43.07%) in exergy efficiency occurred at a high compression ratio. The optimization results showed that the total accidental risk impact was improved by 92.59% and energetic and exergetic efficiency was increased to 92.10% and 77.49%, respectively. The proposed optimum system can provide power, cooling, and freshwater at loads of 28.72 MW, 13.64 kg/s, and 3.43 MW, respectively.
Keywords: 4E analysis; Gasification; Multigeneration system; Multi-effect desalination (MED); Sugarcane bagasse; Climate change (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220327456
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327456
DOI: 10.1016/j.energy.2020.119638
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().