Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures
Yang Bai,
Hai-Fei Lin,
Shu-Gang Li,
Min Yan and
Hang Long
Energy, 2021, vol. 219, issue C
Abstract:
To research the dynamic mechanism of nitrogen and carbon dioxide displacement of methane, we used the grand canonical Monte Carlo (GCMC) simulation method to determine the lowest energy coal model containing adsorbed methane. The desorption behavior of CH4 after the injection of N2 and CO2 at different temperatures was studied. Results show that CO2 and N2 were mainly used to drive off methane gas by occupying adsorption sites. The total energy of the CH4-CO2 model was lower than that of the CH4-N2 model. With the increased of temperature, the average relative concentration and motion velocity of CH4 in the vacuum layer increased. The relationship of the average relative concentration and average velocity distribution of the three gases in the vacuum layer was CH4>CO2>N2. Under the same time conditions, the relationship between the mean square displacement and diffusion coefficient of CH4, CO2, and N2 in different models was CH4>CO2>N2, and they all increased with temperature. The diffusion activation energy of CH4 in the model injected with CO2 was reduced by 20.53%, and the effect of injecting CO2 to promote the desorption of methane was better than that of N2.
Keywords: Gas injection displacement; Coalbed methane; Grand canonical Monte Carlo simulation; Mean square displacement; Diffusion coefficient; Diffusion activation energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220327936
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327936
DOI: 10.1016/j.energy.2020.119686
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().