Determination of time constants of diffusion and electrochemical processes in Polymer Electrolyte Membrane Fuel Cells
Alfredo Iranzo,
Sergio J. Navas,
Felipe Rosa and
Mohamed R. Berber
Energy, 2021, vol. 221, issue C
Abstract:
This work presents an experimental analysis of the time constants associated to diffusion and electrochemical processes in a 50 cm2 Polymer Electrolyte Membrane (PEM) fuel cell. The experimental techniques and results include polarization curves and Electrochemical Impedance Spectroscopy (EIS) analysis of the fuel cell, where the time constants are determined from the analysis of the Distribution of Relaxation Times (DRT). EIS results are also used to determine the cell ohmic resistance, where High Frequency Resistance (HFR) values are calculated from the Nyquist plots. A wide range of operating conditions of the fuel cell are analysed, including back pressure (0.5 bar–1 bar), cell temperature (55 °C, 65 °C, 75 °C), reactant gases relative humidity (30%, 60%, 90%), cathode stoichiometry (λc 2.5–3.5), and oxygen concentration (air and pure oxygen). The effect of the operating conditions on the time constants are discussed, and Damköhler number is introduced and discussed.
Keywords: Polymer Electrolyte Membrane fuel cell; Electrochemical Impedance Spectroscopy; Time constant; Oxygen diffusion; Damköhler number; High Frequency Resistance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221000827
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000827
DOI: 10.1016/j.energy.2021.119833
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().