EconPapers    
Economics at your fingertips  
 

Polarization analysis of a micro direct methanol fuel cell stack based on Debye-Hückel ionic atmosphere theory

Shuo Fang, Yuntao Liu, Chunhui Zhao, Lilian Huang, Zhi Zhong and Yun Wang

Energy, 2021, vol. 222, issue C

Abstract: In this paper, a micro direct methanol fuel cell (μDMFC) stack model is developed in order to analyze the polarization characteristics. The model employed the Debye-Hückel ionic atmosphere theory to describe the charge conductions and electrochemical kinetics during the polarization coupling. The simulated current-power profiles of the model are verified experimentally. Compared with the μDMFC stack model based on conventional polarization theory, the error of the proposed μDMFC stack model reduces by about 8% at average. For every 10 mol · m−3 increase in cathodic oxygen concentration, the increase in polarization coupling efficiency alone can improve the output power by about 2% on average. The increase of operating temperature from 293 K to 333 K weakens the coupling forces within the μDMFC stack. The analyzing results of dynamic operation show that the polarization coupling causes a voltage peak during unloading. High loading current and unloading speed raise the voltage peak. The energy loss caused by methanol crossover decreases during dynamic operating process. The dynamic energy conversion efficiency of the μDMFC stack is relatively high. The proposed μDMFC stack model solves the polarization coupling problem and makes it possible to analyze the polarization coupling between μDMFC stack and modern microelectronic portable systems.

Keywords: Micro direct methanol fuel cell stack model; Polarization analysis; Polarization coupling; Energy conversion efficiency analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221001560
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001560

DOI: 10.1016/j.energy.2021.119907

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001560