Study of a low-damage efficient-imbibition fracturing fluid without flowback used for low-pressure tight reservoirs
Feifei Huang,
Chunsheng Pu,
Xiaoyu Gu,
Zhengqin Ye,
Nasir Khan,
Jie An,
Feipeng Wu and
Jing Liu
Energy, 2021, vol. 222, issue C
Abstract:
The oil production from the low-pressure tight reservoirs in China decreases sharply after fracturing under natural depletion. To supply the formation energy and displace oil through imbibition instead of flowback, a novel nanoparticle-enhanced supramolecular fracturing fluid (NESF) was developed. It consisted of 0.10 wt% hydrophobically modified hydroxypropyl guar (HMHPG), 1.00 wt% synthesized hydrophilic gemini surfactant (HGS), and 0.05 wt% hydrophobically fumed nanosilica (HNS). A series of experiments were conducted to characterize the molecular structure of HGS and evaluate the heat/shear resistance, rheological property, proppant suspension and transportation, formation damage, and imbibition efficiency of NESF. Finally, the oilfield practical application of NESF fracturing without flowback was carried out. The results showed that the heat resistance and the interfacial property of NESF were improved by HNS and HGS respectively. Besides the favorable common properties, a low oil permeability loss rate of 9.40%, a high fracture conductivity retainment rate of 95.11%, and a high imbibition recovery factor of 19.43% were realized by NESF. The accumulative oil production of the well stimulated by NESF without flowback was increased by 13.55% and the decline rate of oil production was reduced from 14.70% to 5.22% in the first 6 months.
Keywords: Fracturing fluid without flowback; Gemini surfactant; Nanoparticle; Formation damage; Imbibition; Oilfield test (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221001900
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001900
DOI: 10.1016/j.energy.2021.119941
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().