EconPapers    
Economics at your fingertips  
 

Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis

Dmitry Pashchenko and Ivan Makarov

Energy, 2021, vol. 222, issue C

Abstract: The experimental investigation of the steam methane reforming process over an industrial Ni-based catalyst was presented. The set of experiments was performed in order to comprehend the effect of the carbon deposition on the methane conversion and pressure drop in a reformer. Various operating conditions such as temperature (600 °C and 800 °C), steam-to-methane ratio (0.5, 1.0, 2.0) and pressure were tested in the experiments. The thermodynamic analysis was accomplished to calculate the equilibrium carbon formation zones for various operating conditions and the experimental results were compared with the results of thermodynamic analysis. The experiments revealed that the methane conversion close to equilibrium is at a residence time of about 5 kgcat·s/ molCH4. The methane conversion as a function of the time on stream was experimentally determined. The maximum decrease in the methane conversion was observed for the steam-to-methane ratio (β) of 0.5. For β=2.0 and β=1.0, the decrease in the methane conversion is minimal. The reforming efficiency and mass of deposited carbon were determined for all investigated operation parameters. When the steam-to-methane ratio is greater than 1, the rate of carbon deposition has an almost linear dependence versus time on stream. For β=2 and T = 800 °C, the carbon deposition rate is approximately 0.12 g/h; for β=2 and T = 600 °C - 0.21 g/h, for β=1 and T = 800 °C - 0.29 g/h, for β=1 and T = 600 °C - 1.02 g/h.

Keywords: Carbon deposition; Steam methane reforming; Experiment; Pressure drop; Reforming efficiency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221002425
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002425

DOI: 10.1016/j.energy.2021.119993

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002425