EconPapers    
Economics at your fingertips  
 

Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation

Sixian Wu and Yonglin Ju

Energy, 2021, vol. 223, issue C

Abstract: In this paper, a numerical model considering phase change and external heat leakage is established to study the thermodynamic and hydrodynamic of a type C LNG tank under sinusoidal sloshing excitation. The volume of fluid (VOF) method, coupled with the mesh motion treatment, is adopted to predict the movement of the vapor-liquid interface. The sinusoidal sloshing excitation is realized by a user-defined function (UDF). Compared with related fluid sloshing experiments, the feasibility of the numerical model is verified. The numerical results show that the sloshing excitation has great influences on the thermophysical process and the BOG generation of the LNG tank. The effects of different sloshing frequencies and amplitudes on the thermodynamic characteristics of the LNG tank are studied. In addition, the partial damage of the insulation system is also studied, and it is found that the sloshing has little effect on the critical superheat of the tank wall where the insulation layer is partial damaged, but it will delay the increase of the tank wall temperature. This study is significant to deeply understand the thermal behavior of the LNG sloshing and the characteristics of the BOG generation under sloshing condition during the actual marine transportation of LNG ships.

Keywords: Type C independent LNG tank; Sloshing excitation; BOG generation; Fluid temperature distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221002504
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002504

DOI: 10.1016/j.energy.2021.120001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002504