EconPapers    
Economics at your fingertips  
 

Chattering-free higher order sliding mode controller with a high-gain observer for the load following of a pressurized water reactor

Jiuwu Hui and Jingqi Yuan

Energy, 2021, vol. 223, issue C

Abstract: The load following of nuclear power plants (NPPs) has been a contentious issue in the control field. In this paper, we propose a chattering-free higher order sliding mode control scheme with a high-gain observer for the load following of a pressurized water reactor (PWR) in the presence of lumped disturbances owing to model uncertainties and external disturbances. The mathematical model of the PWR system is first set up in the form of an affine nonlinear equation. Subsequently, a high-gain observer, which achieves accurate estimations of the unmeasured state and lumped disturbances, is designed. Based on the outputs of the high-gain observer, we develop a chattering-free higher order sliding mode controller to improve the load-following performance while dealing with lumped disturbances and estimation errors of the high-gain observer. In contrast to some previous sliding mode controllers for the load following of NPPs, the proposed controller is completely free from chattering effects because the control input is obtained after integration. The asymptotic stability of the overall control scheme is demonstrated by combining the Lyapunov stability theory with backstepping technology. Finally, the simulation results reveal that the maximum absolute power error is less than 1×104W with the proposed control scheme, 5×105W with a PID controller, and 4×105W with a conventional sliding mode controller. In addition, in contrast to the conventional sliding mode controller, the proposed control scheme produces smooth control input without the chattering phenomenon. Thus, the proposed chattering-free higher order sliding mode control scheme with a high-gain observer provides smoother control input, higher load-following accuracy, and stronger robustness against lumped disturbances than the PID controller and the conventional sliding mode controller.

Keywords: Pressurized water reactor; Load following; Unmeasured states; Lumped disturbances; Chattering-free sliding mode controller (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221003157
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003157

DOI: 10.1016/j.energy.2021.120066

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003157