State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach
Iman Babaeiyazdi,
Afshin Rezaei-Zare and
Shahab Shokrzadeh
Energy, 2021, vol. 223, issue C
Abstract:
Due to the significantly complex and nonlinear behavior of li-ion batteries, forecasting the state of charge (SOC) of the batteries is still a great challenge. Therefore, accurate SOC estimation is essential for the proper operation of batteries while the battery is monitored by the battery management system (BMS). To this end, this paper employs informative measurements of electrochemical impedance spectroscopy (EIS) in machine learning models (ML), i.e., linear regression model and Gaussian process regression (GPR), to accurately predict the SOC of li-ion batteries. First, a feature sensitivity analysis of the data is conducted to extract the most reliable features, i.e., the EIS impedances which are highly correlated with SOC, from EIS measurements. Then, the models are fed by the chosen features. The models are designed to train the input features and establish the mapping relationship between the selected features and the SOC. The results demonstrate that the error of the GPR model was found to be less than 3.8%. Considering onboard EIS measurements, this method can be practically embedded in the battery management system for accurate measurements of SOC of li-ion batteries and ensure the proper and efficient operation of battery-powered electric vehicles.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221003650
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003650
DOI: 10.1016/j.energy.2021.120116
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().