Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA)
Yaopeng Li,
Ming Jia,
Xu Han and
Xue-Song Bai
Energy, 2021, vol. 225, issue C
Abstract:
In response to the stringent emission regulations, artificial neural network (ANN) coupled with genetic algorithm (GA) is employed to optimize a novel internal combustion engine strategy named direct dual fuel stratification (DDFS). An enhanced ANN model is introduced to improve the accuracy and stability of predictions. Compared to the conventional computational fluid dynamics (CFD)-GA optimization method, the ANN-GA method can identify a better solution to achieve higher fuel efficiency and lower nitrogen oxide (NOx) emissions with the lower computational time. This is attributed to the lower cost of ANN calculation, which allows ANN-GA to introduce larger population to seek optimal solutions. Through combining the required new training data with the previous ones, the original ANN model can be updated to adapt to a wider parameter range. Thus, ANN-GA can readily deal with the optimization problems with variable parameters and objectives. When more re-optimizations are required, ANN-GA can save the computational time over 75% than CFD-GA owing to the data-driven nature of ANN-GA by fully utilizing the available data. Overall, the ANN-GA method shows the superiority in accuracy, efficiency, expansibility, and flexibility for DDFS strategy optimization. It is promising to integrate ANN with optimization algorithm for further improvements of engine performance.
Keywords: Genetic algorithm (GA); Artificial neural network (ANN); Multi-model weighted-prediction (MMWP) model; Dual-fuel direct injection; Engine optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221005806
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:225:y:2021:i:c:s0360544221005806
DOI: 10.1016/j.energy.2021.120331
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().