Enhanced thermal management by introducing nanoparticle composite phase change materials for cooling multiple heat sources systems
Jin Wang,
Kai Yu,
Runze Duan,
Gongnan Xie and
Bengt Sundén
Energy, 2021, vol. 227, issue C
Abstract:
In this paper, paraffin mixed with nanoparticles Al2O3, CuO, and multi-walled carbon nanotubes (MWCNTs) were prepared for cooling multiple heat sources. For thermal management of heat sources, performances of the composite phase change materials (PCMs) were investigated at different heating power. Enhanced performance in terms of heat sources temperature, temperature difference between two heat sources, and thermal resistance was experimentally tested and analyzed at various mass fractions of nanoparticle and various power levels. It is found that by using 1.0 wt% Al2O3 composite PCMs the minimal thermal resistance is achieved at the range from 0.63 °C/W to 0.71 °C/W for all power levels, and the heat storage and heat conduction of the presented composite PCMs are enhanced as well as the melting ratio. At 8 W power level, the temperature of the heat source 1 for 1.0 wt% Al2O3 composite PCMs decreases by 17.4% compared to that for pure paraffin.
Keywords: Nanoparticle; Mass fraction; Power level; Thermal resistance; Melting ratio (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221007441
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007441
DOI: 10.1016/j.energy.2021.120495
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().