Meeting EURO6 emission regulations by multi-objective optimization of the injection strategy of two direct injectors in a DDFS engine
Sasan Shirvani,
Saeid Shirvani,
Amir H. Shamekhi,
Rolf Reitz and
Fatemeh Salehi
Energy, 2021, vol. 229, issue C
Abstract:
Direct Dual Fuel Stratification (DDFS) is a novel LTC strategy among other strategies which uses two direct injectors in the combustion chamber, similar to Reactivity-Controlled Compression Ignition (RCCI), but resulting in more authority over the combustion process and the rate of heat release. DDFS has comparable thermal efficiency to RCCI and HCCI, as well as extra-low NOx and soot emissions, and it also is able to meet the EURO6 emission mandate without using aftertreatment under optimized conditions. Thus, it is crucial to optimize the injection strategy of both injectors in a DDFS engine. Artificial Neural Networks (ANNs) are used to develop a model for predicting engine performances and pollution. A multi-objective optimization analysis was performed to minimize NOX, soot and fuel consumption simultaneously using the non-dominated sorting genetic algorithm (NSGA-II) for the injection parameters of the gasoline and diesel direct injectors. The optimal solutions met the EURO6 mandate for NOX and soot, offered lower fuel consumption up to 8 g/kW-h, and also had about 2% higher thermal efficiency than the base case. Thermodynamic evaluation based on the first and second laws were performed for seven selected candidates on the Pareto Front and compared with the base case.
Keywords: Direct dual fuel stratification (DDFS); ANN; Genetic algorithm (GA); Optimization; NSGA-II; CFD (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221009853
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009853
DOI: 10.1016/j.energy.2021.120737
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().