Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery
K. Blok,
R.H. Williams,
R.E. Katofsky and
C.A. Hendriks
Energy, 1997, vol. 22, issue 2, 161-168
Abstract:
If fuel cells are introduced for vehicular applications, hydrogen might become an energy carrier for transport applications. Manufacture via steam-reforming of natural gas is a low-cost option for hydrogen production. This study deals with the feasibility of combining the production of hydrogen from natural gas with CO2 removal. When hydrogen is produced from natural gas, a concentrated stream of CO2 is generated as a by-product. If manufacture is carried out near a depleted natural gas field, the separated CO2 can be compressed and injected into the field and securely sequestered there. The incremental cost of the produced hydrogen (for CO2 compression plus transport, injection and storage) would typically be about 7% relative to the case where the separated CO2 is vented. Moreover, CO2 injection leads to enhanced natural gas recovery as a result of reservoir repressurization. Though the extra natural gas is somewhat contaminated with CO2, it is a suitable feedstock for hydrogen production. Taking credit for enhanced natural gas recovery reduces the penalty for sequestration to a net incremental cost of typically 2%. These cost penalties are much lower than those typical of CO2 removal schemes associated with electricity production. Attention is required for optimum plant siting in order to keep CO2 transport costs low.
Date: 1997
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544296001363
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:22:y:1997:i:2:p:161-168
DOI: 10.1016/S0360-5442(96)00136-3
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().