EconPapers    
Economics at your fingertips  
 

Process design and exergy cost analysis of a chemical looping ammonia generation system using AlN/Al2O3 as a nitrogen carrier

Xiaoyu Wang, Mingze Su and Haibo Zhao

Energy, 2021, vol. 230, issue C

Abstract: Chemical looping ammonia generation (CLAG), in which the N2 fixation and hydrolysis reactions occur via the circulation of nitrogen carriers, has the advantages of low-pressure, low energy consumption and high ammonia yield. Therefore, CLAG is considered as a promising alternative to conventional Haber–Bosh technology. In this work, a model for the CLAG system with a capacity of 300,000 t/a is first established. For the simulation, the N2 fixation and hydrolysis reactors are modeled as the kinetics-based mixed flow reactor, and AlN/Al2O3 is used as the nitrogen carrier. The optimal operation conditions of the CLAG system are then determined by sensitivity analyses. The distribution of the exergy loss is gained from exergy analysis. The results showed that the exergy efficiency of the system reached to about 26%. Finally, exergy cost analysis is conducted to evaluate the cost formation of the system. Generally, the unit exergy cost of heat exchangers is larger than those of the other components. The distillation tower in air separation unit, the N2 fixation reactor, and the compressor in compression and purification unit should be primarily considered in system improvement because of the significant effects of their irreversibilities on other components.

Keywords: Chemical looping ammonia generation; Process simulation; Sensitivity analysis; Exergy analysis; Exergy cost analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422101015X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:230:y:2021:i:c:s036054422101015x

DOI: 10.1016/j.energy.2021.120767

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:230:y:2021:i:c:s036054422101015x