EconPapers    
Economics at your fingertips  
 

Predicting instability frequency and amplitude using artificial neural network in a partially premixed combustor

Sanghyeok Kwak, Jaehong Choi, Min Chul Lee and Youngbin Yoon

Energy, 2021, vol. 230, issue C

Abstract: In this study, the frequency and amplitude of combustion instability were predicted using an artificial neural network (ANN). Experimental data, obtained from a CH4-fueled partially premixed combustor were used to train the ANN model. The instability frequency and amplitude as well as the axial flame distance and injection velocity were measured under various equivalence ratios and flow rates. The experiments indicated that the equivalence ratio, axial flame distance, and injection velocity varied the frequency and amplitude of combustion instability. These three factors were set as candidates of input parameters for the instability prediction model. ANNs for predicting instability frequency and amplitude were trained by dividing them into three categories: ANNs with a single input parameter, two input parameters, and three input parameters. As a result, the ANNs with a single input parameter and two input parameters did not predict both the instability frequency and amplitude simultaneously. However, the ANN trained using three input parameters predicted both the instability frequency and amplitude accurately. The high prediction accuracy can be also confirmed by the correlation coefficients (0.9971 for instability frequency and 0.9204 for instability amplitude). Therefore, the three parameters were crucial for determining the instability frequency and amplitude.

Keywords: Combustion instability; Artificial neural network; Instability prediction; Partially premixed combustor (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221011026
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:230:y:2021:i:c:s0360544221011026

DOI: 10.1016/j.energy.2021.120854

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221011026