EconPapers    
Economics at your fingertips  
 

Mitigating heat demand peaks in buildings in a highly renewable European energy system

Elisabeth Zeyen, Veit Hagenmeyer and Tom Brown

Energy, 2021, vol. 231, issue C

Abstract: Space and water heating accounts for about 40% of final energy consumption in the European Union and thus plays a key role in reducing overall costs and greenhouse gas emissions. Many scenarios to reach net-zero emissions in buildings rely on electrification, but meeting the heat demand peaks in the winter can be challenging, particularly when wind and solar resources are low. This paper examines how to mitigate space heating demand peaks most cost-effectively in a top-down, sector-coupled model with carbon dioxide emissions constraint to be net-zero. It introduces the first model that co-optimises both supply and efficiency simultaneously including all European countries with hourly resolution. The competition between technologies to address these heating peaks, namely building retrofitting, thermal energy storage and individual hybrid heat pumps with backup gas boilers is examined. A novel thought experiment demonstrates that the level of building renovation is driven by the strong seasonal heat peaks, rather than the overall energy consumption. If all three instruments are applied, total costs are reduced by up to 17%. Building renovation enables the largest benefit with cost savings of up to 14% and allows individual gas boilers to be removed from the energy system without significant higher costs.

Keywords: Building retrofitting; Space heating; Energy system modelling; Sector coupling; Optimisation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422101032X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:231:y:2021:i:c:s036054422101032x

DOI: 10.1016/j.energy.2021.120784

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:231:y:2021:i:c:s036054422101032x