Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal
Agata Mlonka-Mędrala,
Tadeusz Dziok,
Aneta Magdziarz and
Wojciech Nowak
Energy, 2021, vol. 234, issue C
Abstract:
In Poland, Refuse Derived Fuel (RDF) potential is significant, but high heterogeneity and contamination of the fuel limit its direct use in power industry. In this work samples were collected from a real-scale multifuel unit co-firing RDF with hard coal. Fuel samples and fly ashes collected from secondary cyclone and from bag filter were analysed in details. The thermal behaviour of fly ashes was investigated using X-ray diffraction (XRD), simultaneous thermal analysis (STA) and high-temperature microscope. High content of calcium compounds in both ash samples was noted. To determine the influence of flue gas treatment installation on the ash morphology and composition, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) was used. Fly ash after flue gas treatment (FGT) system was much finer and higher content of heavy metals was observed. The mass distribution of mercury and leachability of selected heavy metals from the fly ashes were performed for the analysed unit. The concentration of mercury was several times higher in case of first collected fly ash due to longer contact time of flue gases with ash. Fly ashes contained high amounts of copper, lead and vanadium, but leachability of analysed metals was lower in case of bag filter ash.
Keywords: Refuse-derived fuel; Combustion; Fly ash; Heavy metals; Waste incineration (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221014778
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014778
DOI: 10.1016/j.energy.2021.121229
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().