EconPapers    
Economics at your fingertips  
 

Integrated Demand Response programs and energy hubs retail energy market modelling

Hossein Aghamohammadloo, Valiollah Talaeizadeh, Kamran Shahanaghi, Jamshid Aghaei, Heidarali Shayanfar, Miadreza Shafie-khah and João P.S. Catalão

Energy, 2021, vol. 234, issue C

Abstract: The present research aims to formulate competition in a retail energy market in the presence of an Integrated Demand Response (IDR) program to reduce prosumer costs and increase retailer profits. This gives prosumers more degrees of freedom to reduce their energy costs. The retail energy market includes retailers and prosumers equipped with an energy hub containing a boiler for producing heat and combined heat and power (CHP). Retailers aim to maximize profit, whereas prosumers seek to minimize their costs. Hence, a multi-leader-follower game with a bi-level program emerges in which the upper level deals with the profit maximization of each retailer while the lower level considers the cost minimization of each prosumer. The strategic behaviour of each retailer is modelled as a Mathematical Program with Equilibrium Constraints (MPEC) problem. Simultaneously solving all MPECs, which leads to an Equilibrium Problem with Equilibrium Constraints (EPEC), determines the market equilibrium point. The equilibrium point is achieved using mathematical, analytical methods and linearization of nonlinear constraints by accurate techniques. Two different case studies are developed to investigate how the number of retailers influences the market equilibrium point. The first case includes two retailers, while the second case considers an increase in the number of retailers. The results demonstrate that with an increase in retailers' number, their competition increases, causing the prosumers costs to reduce. Furthermore, our results suggest the IDR impact on reduced prosumers cost and increased retailers profit.

Keywords: Retail energy market; Demand response; Mixed-integer linear programming; Energy hub; Combined heat and power (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221014870
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014870

DOI: 10.1016/j.energy.2021.121239

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014870