EconPapers    
Economics at your fingertips  
 

Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures Co-Pyrolysis

H. Stančin, H. Mikulčić, N. Manić, D. Stojiljiković, M. Vujanović, X. Wang and N. Duić

Energy, 2021, vol. 237, issue C

Abstract: Alternative fuels are crucial for the decarbonisation of high-energy demanding processes. The utilisation of waste materials to produce alternative fuels is especially interesting since, the co-pyrolysis of waste plastics and biomass was lately introduced as promising method since the synergistic effect might enhance the product properties compared to those from individual pyrolysis. Furthermore, the utilisation of waste biomass, like sawdust, is interesting since it does not influence the sustainability of biomass consumption, and even more, it avoids the usage of raw feedstock. Thermogravimetric analysis is performed to determine the thermal degradation behaviour and kinetic parameters of investigated mixtures to find the most appropriate utilisation method. Co-pyrolysis was conducted for three mixtures with the following biomass/polyurethane ratios: 75-25%, 50-50%, 25–75%, over a temperature range of 30–800 °C, at three heating rates 5, 10 and 20 °C/min, under an inert atmosphere. Obtained results were subjected to comprehensive kinetic analysis to determine effective activation energy using the isoconversional model-free methods and provide a detailed analysis of the samples' thermal degradation process. This work aimed to identify the main thermal decomposition stages during co-pyrolysis of biomass and polyurethane mixtures and provide the mixture composition's influence on the considered thermochemical conversion process.

Keywords: Thermogravimetric analysis; Kinetic analysis; Sawdust; Polyurethane; Co-pyrolysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221018405
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:237:y:2021:i:c:s0360544221018405

DOI: 10.1016/j.energy.2021.121592

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221018405