EconPapers    
Economics at your fingertips  
 

Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach

Cem Emeksiz and Mustafa Tan

Energy, 2022, vol. 238, issue PA

Abstract: Wind speed should be predicted in a sensitive and reliable manner for the effective use of wind energy in wind farms. However, the volatility and non-linearity features of wind make it difficult to do so. Hence, many researchers have focused on the development of reliable prediction models for wind speed. Aimed at this challenge, the present study proposes a hybrid model comprised of Ensemble Empirical Mode Decomposition Adaptive Noise (CEEMDAN), Local Mean Decomposition (LMD), Hurst and Back-propagation Neural Network (BPNN). This model is actualized as follows: First, wind speed time series is decomposed into its sub-components via CEEMDAN technique. The least irregular and unsystematic of the IMFs with the highest frequency obtained as a result of decomposition via CEEMDAN is subject to secondary decomposition using the LMD technique. The obtained components are subject to Hurst analysis to be transformed into micro, meso and macro scale series. These series are then applied on feedback artificial neural networks. The analysis results indicate that model proposed has a better performance than the compared traditional forecasting methods (EEMD-VDM-BPNN and EEMD-EWT-BPNN) with regard to prediction accuracy. The MAPE values obtained via the proposed hybrid model were observed to have decreased by 41.16% and 78.80% when compared with those obtained using traditional models.

Keywords: Hybrid decomposition technique; Wind speed forecasting; Back propagation neural network; Hurst analysis; Local mean decomposition (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221020120
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221020120

DOI: 10.1016/j.energy.2021.121764

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221020120