Evaluation of the operation data for improving the prediction accuracy of heating parameters in heating substation
Jianjuan Yuan,
Ke Huang,
Zhao Han,
Chendong Wang,
Shilei Lu and
Zhihua Zhou
Energy, 2022, vol. 238, issue PB
Abstract:
For the heating system with thermal inertia, accurate prediction of heating parameters is the premise of achieving on-demand heating. The existing prediction models do not evaluate the historical operation data before model training, which may lead to the establishment of non-on-demand models and affect their application in actual project. In this paper, firstly, the data evaluation method and application process were proposed based on heating professional mechanism and actual operation data. Secondly, the proposed method was used to evaluate the historical data of a heating substation, and the relationship between outdoor temperature and heating parameters (daily secondary supply temperature and daily heating consumption) for different indoor temperature intervals were obtained. Finally, the prediction models were training by historical data with and without evaluation method, and compared them from evaluation criteria and professional mechanism. The results showed that the accuracy of prediction model established by historical data with evaluation method was greatly improved, and can be used to guide the energy-saving operation of heating substation. In addition, it was also obtained that the prediction model established by big data can be used for prediction guidance at the middle heating period, and linear regression method was suitable for the end of heating period.
Keywords: Accurate prediction; Historical data; Evaluation method; High accuracy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221018806
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221018806
DOI: 10.1016/j.energy.2021.121632
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().