Enhanced electrical performance of spring-supported magneto piezoelectric harvester to achieve 60 Hz under AC magnetic field
Quan Wang,
Kyung-Bum Kim,
Sang Bum Woo,
Sung Min Ko,
Yooseob Song and
Tae Hyun Sung
Energy, 2022, vol. 238, issue PB
Abstract:
Magneto piezoelectric harvesters (MPHs) operating under an AC magnetic field have attracted much attention due to their vital importance in portable industrial applications. Here, we present the first report of a spring-supported magneto piezoelectric harvester (SMPH) operating under an AC magnetic field to generate enhanced electric performance. As the length of the spring supporting the MPH becomes longer, the elasticity coefficient (N/mm) becomes lower and the resonance frequency decreases. In order to implement SMPH at a resonance frequency of 60 Hz, a spring with spring constant of 24.52 N/mm is used to support the MPH and produce maximum output power. To increase the output power of the SMPH, a magnetic tip was used to scavenge the AC magnetic field. The electrical performance of the SMPH with the magnetic tip mass showed an output voltage of 12.5 Vmax, output current of 654 μAmax, and output power of 5.56 mWmax at a load resistance of 30 kΩ and AC magnetic field of 80 μT. The SMPH exhibits an advantage over the conventional rigidly supported MPH with regards to output power. The demonstrated device is capable of meeting the requirements of charging and operating a wireless temperature sensor system, and thus it is most suitable for use in actual industrial sites where such magnetic fields exist.
Keywords: Magneto piezoelectric harvester; Spring supported; AC magnetic field; Resonance matching; Power line-cable (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221019411
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019411
DOI: 10.1016/j.energy.2021.121693
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().