Conceptualization and techno-economic evaluation of municipal solid waste based microgrid
Arashdeep Singh and
Prasenjit Basak
Energy, 2022, vol. 238, issue PB
Abstract:
To find a sustainable municipal solid waste (MSW) management and renewable electricity generation system is need of the hour. In modern hybrid electricity generation systems, the use of MSW on priority is not evaluated yet. To satisfy this need, a small scale MSW based microgrid is proposed and evaluated in economic and reliability terms. First, the waste of the selected city is characterized considering four seasons summer, spring, autumn and winter for a complete year. Then a microgrid system is designed using MSW processing techniques namely, anaerobic digestion (AD) and gasification that are further integrated with solar photovoltaic (PV) system, battery and the main grid. The size of the microgrid is optimized using an artificial bee colony (ABC) algorithm targeting the configuration that meets the desired system reliability requirements with minimum cost. The proposed system found as a sustainable approach to process the MSW of a small city (0.1 million population) and a reliable mean to fulfill the electricity demand of a village having 225 houses in India. The annualized system cost (ASC) of the proposed hybrid system found to be INR 5760919 with levelized cost of electricity (LCOE) 5.65 INR/kWh (0.0737 USD/kWh). The total MSW landfilling avoided cost is 451898.9 INR/year that is 17% of its processing cost.
Keywords: Microgrid; MSW; Optimization; Economic analysis; Renewable energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221019599
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019599
DOI: 10.1016/j.energy.2021.121711
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().