A robust model for aggregated bidding of energy storages and wind resources in the joint energy and reserve markets
Meysam Khojasteh,
Pedro Faria and
Zita Vale
Energy, 2022, vol. 238, issue PB
Abstract:
The high reliability and flexibility of Battery Energy Storage (BES) resources in comparison with other renewable technologies promote the development of this technology in smart grids. The fast response of BES to load variations could help the power system operators to maintain the balance of generation and consumption in real-time, and improve the flexibility of the smart grid, effectively. In this work, a new model is presented that determines the aggregated scheduling of BES and Wind Power Resource (WPR) in the joint energy and reserve markets. To evaluate the performance of BES in different markets, the proposed model is divided into day-ahead and real-time planning horizons. According to market prices, ramp rates, marginal costs, and technical constraints of units, the optimal participation levels in different markets are determined. The deployed power in real-time and wind power are considered as the uncertain parameters and the Robust Optimization (RO) framework is proposed to manage the related financial risk based on the worst-case realizations of uncertain parameters. The robust strategy is formulated based on the Mixed Integer Linear Programming (MILP) technique, which can be solved via the branch-and-bound method. Finally, the performance and effectiveness of the model are analyzed via different case studies. Simulation results show that the day-ahead and real-time markets are the best options for buying and selling the energy of BESs, and participation in the reserve market and regulation service increases their profit, significantly. Furthermore, the expected profit greatly depends on the risk preferences of decision-makers, and reducing the variation interval of wind generation by 40 % leads to an increase of 74.65 % in revenues.
Keywords: Battery energy storage; Energy market; Reserve market; Regulation service; Robust optimization; Uncertainty; Wind power (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221019836
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019836
DOI: 10.1016/j.energy.2021.121735
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().