EconPapers    
Economics at your fingertips  
 

Thermo-economic analysis, optimisation and systematic integration of supercritical carbon dioxide cycle with sensible heat thermal energy storage for CSP application

Dhinesh Thanganadar, Francesco Fornarelli, Sergio Camporeale, Faisal Asfand, Jonathon Gillard and Kumar Patchigolla

Energy, 2022, vol. 238, issue PB

Abstract: Integration of thermal energy storage with concentrated solar power (CSP) plant aids in smoothing of the variable energy generation from renewable sources. Supercritical carbon dioxide (sCO2) cycles can reduce the levelised cost of electricity of a CSP plant through its higher efficiency and compact footprint compared to steam-Rankine cycles. This study systematically integrates nine sCO2 cycles including two novel configurations for CSP applications with a two-tank sensible heat storage system using a multi-objective optimisation. The performance of the sCO2 cycles is benchmarked against the thermal performance requirement of an ideal power cycle to reduce the plant overnight capital cost. The impacts of the compressor inlet temperature (CIT) and maximum turbine inlet temperature (TIT) on the cycle selection criteria are discussed. The influence of the cost function uncertainty on the selection of the optimal cycle is analysed using Monte-Carlo simulation. One of the novel cycle configurations (C8) proposed can reduce the overnight capital cost by 10.8% in comparison to a recompression Brayton cycle (C3) for a CIT of 55 °C and TIT of 700 °C. This work describes design guidelines facilitating the development/selection of an optimal cycle for a CSP application integrated with two-tank thermal storage.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422102003X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s036054422102003x

DOI: 10.1016/j.energy.2021.121755

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s036054422102003x