A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors
Xiaodong Zhu,
Shihao Zhao,
Zhile Yang,
Ning Zhang and
Xinzhi Xu
Energy, 2022, vol. 238, issue PC
Abstract:
In recent years, global warming impact are becoming increasingly severe due to the dramatic green house emission and severe environmental problem. The large integration of PEV and RGs directly affect the supply and demand balance of power grid, which bring challenges to the secure and economic operation of power system. This study proposes a novel parallel social learning particle swarm optimization method for solving the large scale power system scheduling problem with significant integration of RGs and PEVs. The novel algorithm combines the real value and binary decision variables obtained by social learning particle swarm optimization algorithm, aiming to solve large scale mixed integer unit commitment problem considering charging and discharging management of PEV with large RGs integration. To verify the effectiveness of the proposed algorithm, numerical examples are analyzed for multi scale unit numbers and various cases of RGs and PEVs. The results show that the proposed parallel social learning particle swarm optimization method has superior performance in solving UC problems considering new energy sectors. In addition, the case studies shows that the integration of new energy sources and flexible demand side management of plug-in electric vehicles have great potentials to alleviate power grid load and bring considerable economic benefits.
Keywords: Unit commitment; Large scale; Meta-heuristic; Electric vehicle; Renewable energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221020776
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221020776
DOI: 10.1016/j.energy.2021.121829
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().