Computational investigation of oxy-combustion of pulverized coal and biomass in a swirl burner
Ali Cemal Benim,
Cansu Deniz Canal and
Yakup Erhan Boke
Energy, 2022, vol. 238, issue PC
Abstract:
Swirling pulverized coal and biomass flames are computationally investigated for oxy-combustion. The two-phase flow is described by a Eulerian-Eulerian approach. For radiation, the absorption coefficient is approximated by superposing particle and gas contributions, considering oxy-combustion conditions for the latter. Turbulence is modelled within a URANS framework, using the standard k-ε model and Reynolds Stress Model (RSM). It is observed that RSM captures the unsteady dynamics of the coherent structures, whereas they are not captured by k-ε model. Predicted velocities are compared with measurements. It is observed that the RSM predictions are in a better agreement with the measurements compared to the k-ε model. The discrepancy between the predictions and measurements can most clearly be quantified in terms of the peak values of the axial velocity in the forward flow region enveloping the inner recirculation zone. The calculations constantly underpredict the measurements. On the average, this is about 32% for the RSM and 52% for the k-ε model, for both flames. The biomass flame is predicted nearly twice as long compared to the coal flame. As means of verification, the coal flame is additionally calculated using a classical Eulerian-Lagrangian two-phase formulation, leading to quite similar results to the Eulerian-Eulerian formulation.
Keywords: Pulverized fuel combustion; Oxy-combustion; Two-phase flow modelling; Turbulence modelling; Combustion modelling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221021009
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221021009
DOI: 10.1016/j.energy.2021.121852
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().