EconPapers    
Economics at your fingertips  
 

Study on the energy efficiency of bioethanol-based liquid hydrogen production process

Kaiyu Li, Yitong Gao, Shengan Zhang and Guilian Liu

Energy, 2022, vol. 238, issue PC

Abstract: A hydrogen liquefaction process combined with bioethanol producing hydrogen process and multistage compressor process is designed, simulated and analyzed. Its specific energy consumption (SEC) and coefficient of performance (COP) are 5.41 kWh/kgLH2 and 22.38%, respectively, and the functional exergy efficiency is 71.13% for entire process and 53.61% for the hydrogen liquefaction process. The systematic relationship among hydrogen liquefaction ratio, SEC, COP and functional exergy efficiency of nitrogen precooling cycle, helium cryogenic cycle and whole process are deduced and analyzed. The results show that the process's performance improves with the hydrogen liquefaction ratio, and the variation trends of SEC, COP and functional exergy efficiency change significantly. The optimal hydrogen liquefaction ratio is 0.89, and the corresponding SEC is 4.71 kWh/kgLH2, reduced by 12.94%, the COP and functional exergy efficiency are 25.70% and 81.70%, and the general exergy efficiency is 43.60%.

Keywords: Hydrogen liquefaction; Exergy analysis; Energy efficiency; Hydrogen liquefaction ratio (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221022805
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022805

DOI: 10.1016/j.energy.2021.122032

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022805